Corning® SMF-28e+® Optical Fiber

Product Information

CORNING

How to Order

Contact your sales

representative, or call the Optical Fiber Customer Service Department:

Email: cofic@corning.com

Ph: 1-607-248-2000 (U.S. and Canada) +44-1244-525-320 (Europe)

Please specify the fiber type, attenuation, and quantity when ordering.

Corning's SMF-28e+® optical fiber is the industry leader in comprehensive single-mode fiber performance for metro and access networks. It is ITU-T G.652.D-compliant and fully backward compatible with legacy standard single-mode fibers. SMF-28e+ fiber is built on Corning's solid foundation of quality and proven performance. Since we brought the first fiber to market more than 40 years ago, our demonstrated leadership in single-mode fiber innovation is unparalleled.

Optical Specifications

Maximum Attenuation

Wavelength	Maximum Value*
(nm)	(dB/km)
1310	0.33 - 0.35
1383±3**	0.31 – 0.35
1490	0.21 – 0.24
1550	0.19 - 0.20
1625	0.20 - 0.23

^{*}Maximum specified attenuation value available within the stated ranges.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Diameter	of	Wavelength (nm)	Induced Attenuation
(mm)	Turns	1550	(dB) ≤ 0.03
50	100	1310	≤ 0.03
50	100	1550	≤ 0.03
60	100	1625	≤ 0.03

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode-Field Diameter

Wavelength	MFD
(nm)	(µm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm·km)]
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength (λ_0): 1310 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): \leq 0.092 Ps/(nm²-km)

Polarization Mode Dispersion (PMD)

	Value (ps/√km)
PMD Link Design Value	≤ 0.06*
Maximum Individual Fiber PMD	≥ 0.1
*Complies with IEC 60794-3: 2001,	Section 5.5,

*Complies with IEC 60/94-3: 2001, Section 5.3, Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMDQ). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**}Attenuation post-hydrogen aging according to IEC 60793-2-50 Section C.5 for B.1.3 fibers.

Alternate attenuation offerings available upon request.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Coating Diameter	$242 \pm 5 \mu M$
Coating-Cladding Concentricity	<12 µм

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°С то +85°С*	≤ 0.05
Temperature Humidity Cycling	-10°C то +85°С* up то 98% RH	≤ 0.05
Water Immersion	23°± 2°C	≤ 0.05
Heat Aging	85°± 2°C*	≤ 0.05

^{*}Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥100 kpsi (0.7 GPa)*.

Length

Fiber lengths available up to 63.0 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	8.2 µm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Zero Dispersion Wavelength (λ_o)	1317 nm
Zero Dispersion Slope (S _o)	0.088 ps/(nm²•km)
Effective Group Index of Refraction (N _{eff})	1310 nm: 1.4676 1550 nm: 1.4682
Fatigue Resistance Parameter (N _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3N) Wet, 14-day room temperature: 0.6 lbs. (3N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

^{*}Higher proof test levels available.